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ABSTRACT

Reducing traffic accidents is a crucial global public safety concern.
Accident prediction is key to improving traffic safety, enabling
proactive measures to be taken before a crash occurs, and inform-
ing safety policies, regulations, and targeted interventions. Despite
numerous studies on accident prediction over the past decades,
many have limitations in terms of generalizability, reproducibil-
ity, or feasibility for practical use due to input data or problem
formulation. To address existing shortcomings, we propose Crash-
Former, a multi-modal architecture that utilizes comprehensive
(but relatively easy to obtain) inputs such as the history of accidents,
weather information, map images, and demographic information.
The model predicts the future risk of accidents on a reasonably
acceptable cadence (i.e., every six hours) for a geographical loca-
tion of 5.161 square kilometers. CrashFormer is composed of five
components: a sequential encoder to utilize historical accidents and
weather data, an image encoder to use map imagery data, a raw
data encoder to utilize demographic information, a feature fusion
module for aggregating the encoded features, and a classifier that
accepts the aggregated data and makes predictions accordingly.
Results from extensive real-world experiments in 10 major US cities
show that CrashFormer outperforms state-of-the-art sequential and
non-sequential models by 1.8% in F1-score on average when using
“sparse” input data.

CCS CONCEPTS

« Computing methodologies — Supervised learning by clas-
sification; « Applied computing — Transportation.
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1 INTRODUCTION

Traffic safety is a primary global public safety concern, with an
estimated 1.35 million in fatalities and 20 — 50 million in injuries
yearly due to road traffic crashes. These accidents result in loss of
life and damage and have significant economic costs. Predictive
models can be essential in improving traffic safety by identifying
high-risk areas, informing safety policies and regulations, identify-
ing patterns and trends in accident data, and developing targeted
interventions to address specific factors contributing to accidents.
[24].

Given the importance of the problem, substantial research has
been conducted in the field of accident risk prediction over the past
few decades.

Previous studies have used various data sources to investigate
and predict city-wide accident risk, including crash data, GPS data,
road network attributes, land use features, and weather and popu-
lation data. Examples of such studies include STCL-Net by Bao et
al. [2], a crash risk prediction network by Pei Li et al. [13], unsu-
pervised clustering and XGBoost by Shi et al. [31], Deep Accident
Prediction (DAP) by Moosavi et al. [21], RiskOracle framework by
Zhou et al. [42], a city-wide traffic accident risk forecasting model
by Wang et al. [36], telematics data-based accident risk prediction
by Hu et al. [8], and XSTNN, a Spatio-temporal Deep Learning
solution by Medrano et al. [4].

The existing studies have limitations such as being only applica-
ble in specific locations, lacking generalizability (given their input
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data) [15, 30], insufficient accuracy in smaller areas [4, 37, 38], de-
pendence on a range of data attributes that may not be available
in all regions [4, 22, 27, 37], unsuitability for real-time applications
[4,21, 22,32, 35], or using over-simplified methods [9, 14, 28]. These
factors make them less practical for real-world application.

Incorporating additional information such as accident history,
weather information, map images, and demographic data, is es-
sential to a more precise prediction the risk of accidents. A more
comprehensive view provides a better understanding of the various
factors contributing to accidents [5, 21]. Accident history offers in-
sight into past incidents and helps identify high-risk areas [6, 10, 33].
Weather information, such as precipitation and temperature, can in-
dicate how the weather conditions affect the risk of an accident [21].
Map images offer a detailed view of road characteristics, and in-
frastructure [18, 22]. Demographic information such as population
density, income levels, and age distribution help predict accident
risk by identifying areas with high traffic congestion and the most
at-risk groups [11]. Combining these data sources is crucial for
developing effective safety measures, targeted actions, and policies
to reduce accident risk [1, 12, 16, 17].

To mitigate the existing shortcomings in the literature and utilize
various valuable data sources, in this paper, we introduce Crash-
Former, a multi-modal architecture for predicting the risk of ac-
cidents for each area. CrashFormer seeks to predict the risk of
accidents in different regions by using a multi-source dataset, in-
cluding the history of accidents, weather information, map images,
and demographic information of each area. CrashFormer consists of
five components: (1) a sequential encoder, which takes time-series-
based historical accident and weather data for a region, and its
latent outputs contain encoded history data; (2) an image encoder,
which utilizes map image data for each area to encoder characteris-
tics of roads for a feature vector; (3) a raw feature encoder that uses
demographic information of a region; (4) a feature fusion module
to aggregate all the encoded latent together and (5) a classifier
component that predicts the risk of accident for each location.

Our proposed approach centers on forecasting accident probabil-
ities by utilizing historical accident and weather data presented in
a sequential format. Additionally, we incorporate a comprehensive
demographic dataset containing 150 attributes. This dataset was
gathered through web scraping from an online portal (please refer
to Section 3.3 for detailed information about the database). Further-
more, we make use of map images corresponding to the locations
of accident events. To encode data from these diverse sources, we
employ two advanced models. Firstly, we employ the FEDFormer,
a transformer-based model renowned for capturing long-range rela-
tionships within sequences, to encode historical data [41]. Secondly,
we utilize the Vision Attention Network (VAN) model to capture
latent features within map images. The VAN model facilitates self-
adaptive and long-range correlations, allowing for effective analysis
of visual information when predicting accident probabilities [7].

In our experiments, we employ CrashFormer to predict accident
risk (the probability of an accident) within a hexagonal area in the
next 6 hours. We evaluate our proposal in 10 major cities in the
United States, and the results show that our model outperforms the
baselines. CrashFormer generally surpasses the next best network
by 1.8% improvement in the F1-score when predicting the risk of
accidents. Additionally, we observe that the proposed model shows
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superior outcomes even when the training data is only available for
certain parts of a city (referred to as spatial sparsity). This implies
that the model can generalize well to new areas without much effort
to tweak model parameters.

2 RELATED WORK

Numerous previous studies have utilized historical crash data to
predict the probability of traffic accidents. However, our research
highlights that accident records from the past are not the sole sig-
nificant factors; meteorological data and demographic information
also play vital roles in anticipating accident risks. In this section,
we present a brief overview of significant research efforts in this
domain.

Bao et al. conducted a comprehensive investigation using a spa-
tiotemporal convolutional LSTM network (STCL-Net) to analyze the
risk of accidents across a city. They employed a multi-source dataset
that included crash data, taxi GPS data, road network attributes,
land use features, and weather and population data specifically for
Manhattan in New York City [2]. The study revealed that the predic-
tive accuracy diminishes as the grid resolution increases. However,
it is essential to note that since this study only uses data limited to
a specific city, it may need further investigation to assess whether
it is generalizable to locations with different accident patterns.

Shi et al. introduced a feature extraction and selection frame-
work for accurate prediction of driver risk levels [31]. By extracting
approximately 1300 features related to driving behaviors, the au-
thors employed unsupervised clustering to estimate vehicle risk.
To address the problem of class imbalance, under-sampling tech-
niques were applied to the less risky data. Furthermore, critical
features were identified through feature importance ranking us-
ing XGBoost. This study demonstrated the effectiveness of this
approach in accurately predicting vehicle risk levels.

Ren et al. collected significant traffic accident data and investi-
gated the spatiotemporal correlation within traffic-related data [27].
Their analysis revealed the non-uniform distribution of accident
risks in time and space, exhibiting strong periodical temporal pat-
terns and spatial correlations. The authors developed a Deep Neural
Network (DNN) solution referred to as the Traffic Accident Risk
Prediction Method (TARPML) to predict citywide crash risk. The
reliance of this method on limited traffic accident data and its inabil-
ity to predict risk at a fine-grained road level, are the shortcomings
of this research.

Moosavi et al. proposed the Deep Accident Prediction (DAP)
framework, which leverages multi-source data, including point-of-
interest, weather data, and historical traffic events [21]. The DAP
framework incorporates recurrent, fully connected, and embedding
components, and a publicly available large-scale accident dataset
was utilized to evaluate its performance. The study demonstrated
the efficacy of integrating traffic information, time, and points
of interest in enhancing real-time risk prediction. However, the
study takes a massive area for prediction, which helps to improve
accuracy, but it is not useful in the real world, and the real world
needs to predict accurately for a small area.

Zhou et al. introduced the RiskOracle framework for more gran-
ular crash risk prediction, down to a minute level [42]. They devel-
oped the Differential Time-varying Graph Neural Network (DTGN),
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which captures the dynamic nature of road networks and immedi-
ate changes in traffic conditions. To address biased risk predictions,
region selection schemes were employed. The effectiveness of the
proposed solution was verified using two real-world datasets.

Our proposed solution, CrashFormer, is an advanced time-series
model designed to forecast the probability of accident risk in specific
areas at any given time. This model is particularly advantageous for
real-time applications due to its focus on a smaller geographic scale,
specifically 5.161 square kilometers, surpassing previous studies
in terms of granularity. Furthermore, our approach introduces a
novel integration of real-time traffic events, weather events, map
images, and demographic information, which remains unexplored
in existing research. Another notable advantage of our methodol-
ogy is utilizing readily available and easily accessible data from
public sources, eliminating the need for extensive and complex data
collection procedures in other studies.

3 DATASET

One of the important paper’s contributions is offering a robust
multi-source dataset for accident risk prediction. We gather data
from multiple sources, use feature engineering to include additional
useful features, and pre-process the data to better conform with the
problem of concern i.e. predicting accident risks. Finally, we join and
fuse the data from the different sources to create the dataset. The
input datasets we use include information about accident history,
weather information and events, demographic information for the
accident area, and map images.

3.1 Accident History

To leverage the accident history, we start with the dataset pro-
posed by Moosavi et al. [20] and add features to it. It comprises
comprehensive data on approximately 6.2 million accident records
collected from Bing and MapQuest between 2016 and 2021 in the
United States . These records provide detailed information about
various accident attributes, including time, location, severity, dura-
tion, length of traffic impact, and descriptive details. We enhance
this dataset by adopting the hexagon-based city partitioning tech-
nique proposed by Monsefi et al. [18], employing the H3 library
developed by Uber 2.

Recognizing the significance of traffic patterns influenced by
temporal factors, as highlighted by Badrestani et al. [1], we incorpo-
rated date and time considerations into our analysis. We introduced
additional time-related features to capture the influence of the hour
of the day, day of the week, and day of the month on traffic accident
patterns. These features were extracted from the accident times-
tamps and appended to the dataset. Additionally, we determined
the holiday status of the accident occurrence date and introduced
an "isHoliday" flag to account for its potential impact on accident
patterns.

Moreover, we considered the proximity of points of interest
(POIs) to the accident locations. For this purpose, we utilized a
one-hot vector of length 13, representing different types of POIs
such as crossings, stations, amenities, bumps, giveways, traffic sig-
nals, no-exit points, railways, roundabouts, stops, traffic calming

!download dataset from here https://smoosavi.org/datasets/us_accidents
Zsee https://github.com/uber/h3
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measures, junctions, and turning loops. This information provides
additional context regarding the surroundings of the accident sites
and contributes to a more comprehensive analysis of accident risk
factors.

3.2 Weather events

To consider the weather conditions for the time accidents took place,
we leverage a dataset collected by Moosavi et al.[19], containing
fine-grained weather events recorded from 2016 to 2021, containing
about 7.5 million records. This dataset includes information about
the type of weather event in addition to its severity in a specific
weather station. The features are weather type (rain, snow, fog,
etc.), time, duration, severity, and location.

3.3 Demographics

Demographics are the socioeconomic statistics describing infor-
mation about the population and its characteristics. Demographic
analysis studies a population based on gender, age, and race. The
data include income, education, marriage, death, birth, and employ-
ment. Socioeconomic information is a type of coarse-grained data
that is included in this study. This data was gathered for about
45,000 US postal areas for different ZIP Codes. The collected de-
mographic information includes four other groups of information
for the residents of a specific postal area: demographics, housing,
employment and income, and education. For data collection, we
used data crawling strategies on an online portal 3. We collected
150 demographic features and created a public dataset 4.

3.4 Map Images

Textural information about a specific area where accidents occur
could help the model generate more accurate predictions. In this
study, we have collected map images from OpenStreetMap® [23]
using the coordinates of accident events. In other words, each ac-
cident is mapped to a unique area (hexagonal region). Afterward,
the coordinates of the center of the areas are used to fetch a map
image and assign it to the accident event. The location’s zoning has
been based on Uber’s Hexagonal Hierarchical Spatial Indexing ©
with a resolution of R = 7, which corresponds to hexagonal areas
with about 2604 meters and 5161000 square meters of edge length
and area, respectively. Also, the zoom level of the OpenStreetMap
is chosen to be 14. We followed the method used by Monsefi et al.
[18] to collect the images.

4 RESEARCH QUESTION

This section formally defines our research question by utilizing
previously recorded traffic events, weather observations, and points
of interest from [21]. Additionally, we gather map images using the
method outlined in [18] and demographic information as outlined in
Section 3.3. Given a set of accident events C, we define a geographic
region as follows.

3see https://www.unitedstateszipcodes.org/

4see the final dataset https://www.kaggle.com/datasets/aminkarimimonsefi/demographic-
dataset

Ssee https://tile.openstreetmap.org;

®see https://www.uber.com/blog/h3/
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Definition 4.1 (Geographic Region). A geographical region r is
a hexagonal area, as defined in Uber h3 library [29]. This library
provides levels 0 to 15 with different areas 7. We have determined
that a resolution level of 7 is reasonable for our work. This resolution
has an edge size of 2.604 kilometers and an area of 5.161 square
kilometers, making it a useful moderate region size for various
applications. Additionally, we gathered demographic information
by using US zip codes. For each region r, we identified the closest
zip code and assigned that information to the region.

We use a database including high-resolution geographical images
M represented as hexagonal tiles, as well as a dataset that contains
the location of points of interest P, such as stop signs, amenities,
and traffic lights for a specific area. Using these datasets, we can
now define our research question as follows.

Given:
- A collection of geographical regions R = {ry,ra, ..., rn}.
- Asetof time intervals with a fixed duration T = {t1, t2, ..., tm},
where |t| = 6 hours, for t € T.
- A database of accident events C, = {c1,c2,...} forr € R.

- A database of map image data M, = {my,my,...} forr e R.

- A database of points-of-interest P, = {p1, p2,... } forr e R.

- A single value K that shows length of sequenced data.

Create:

- A representation F,; for region r € R for a time interval
t € T, using Py, Cr and M.

- A binary label L,; for F,;, where a value of 1 indicates that
the area has a high level of accident risk (if at least one
accident was reported in that area) during ¢ in the region r;
and 0 otherwise.

Find:

- Amodel M for predicting L, using (Frs;_s, Frt;_g_,» - -
In other words, predict the label of the current time interval
based on the observations from the K recent intervals.

Objective:
- Minimize the prediction error.

5 METHODOLOGY

In this section, we describe a model called CrashFormer, which is
used to predict the level of accident risk. The model takes in three
types of input: a feature vector representation of accident events,
map image data, and demographic data.

5.1 Sequential Feature Vector

We aggregate all the accident events in a geographical region and
average them over a t = 6 hours time interval and then create a
feature vector representation. We consider the following features
for the accident events:

e Weather: We use a 8-dimensional vector to represent Weather
Severity, Precipitation; and 6 additional indicators represent-
ing special weather events Rain, Fog, Cold, Snow, Storm,
and Hail. We use the weather data previously obtained by
Moosavi et al. [19].

o POI: We create a vector of size 13 for representing the ex-
istence of the point-of-interests (POIs, or map annotations)

7see https://h3geo.org/docs/core-library/restable/

~,Frti,1 )
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within a radius of r. The vector contains Amenity, Traffic
Calming, Crossing, Bump, Junction, Give Way, No Exit, Rail-
way, Station, Stop, Traffic Signal, Roundabout and Turning
Loop. The value for each item is 1 if any of the accidents at
time ¢ in area r has a nearby point-of-interest; otherwise, it
is03.

e Time-Related Contextual Information: We construct a
4-dimensional vector for time information by aggregating
all available data within a 6-hour window. From the accident
timestamp, we extract the following information: Day of
Week, Month, Day of Month, and Is Holiday. The use of this
contextual time-related information should be useful, as it is
believed that traffic patterns exhibit a cyclic variation based
on hour, week, and month. To factor in the impact of work
hours on traffic patterns, the hour of the day is computed
from the accident timestamp, and the day of the week and
month of the year are added as extra features.

e Accident Information: We create a 2-dimensional vector
to represent the information related to the accident. We take
the average of Accident Severity, collected from [21]. We also
create a label indicating whether an accident occurred in the
region r at time ¢.

For aggregating all the accidents that occurred during ¢ in a
region r, we take the value for POI, weather type, and accident
label data. For instance, if we have several accident events during
the time window ¢ in area r, and if there is a specific POI near the
location of one of the accidents, we set the corresponding POI to 1.

5.2 Map Image Representation

Map images are a valuable source of contextual information in
understanding the causes of accidents. Accidents may be less fre-
quent in areas with a sparse road network and more frequent in
urban areas with a dense road network. To capture this informa-
tion, each geographical area is associated with an image obtained
from OpenStreetMap (OSM)® with a zoom_level of 14. The map
images used in the model are square-shaped and have a resolution
of 256 X 256 pixels. Each pixel represents an area of 9.555 meters.
This means that the side size of the image is approximately 2.446
km, and its total area is about 5.983km?. The map images can en-
compass the entire geographical region r, with an edge length of
2.604km and an area of 5.161km?.

5.3 Demographic Representation

The dataset of demographic data includes around 150 features. We
removed the columns containing descriptions and took 144 features
10 In this dataset, we have some information related to area r like
Population, Housing Units, Density, Gender, Race, etc.

5.4 CrashFormer

We present a multi-modal architecture named CrashFormer, which
leverages transformer-based architecture to forecast accident risk.
This model incorporates a wide range of factors, including weather

8For more information about point-of-interests and their importance, see [18]
9see https://wiki.openstreetmap.org/wiki/Zoom_levels

Ofor more information, see https://www.kaggle.com/datasets/aminkarimimonsefi/demographic-

dataset
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Figure 1: The architecture of CrashFormer. The sequential data based on accident and weather information, along with map
images and demographic data, are each fed to a separate component, and the output feature vectors are concatenated.

Table 1: Number of hexagonal areas in each city

Houston | Miami | Los Angeles | Charlotte

Dallas

Austin | Atlanta | Phoenix | Seattle | San Diego

386 250 133 255 210

254 185 217 105 149

conditions, historical traffic data, the population density of the
area, and road characteristics inferred from map images and de-
mographic information. Building upon the findings of Najjar et al.
[22], who demonstrated the feasibility of using satellite images to
capture road safety similarity, we utilize map images to identify
locations with similar levels of road safety based on environmental
attributes, color variations (e.g., gray versus green), and the pres-
ence of specific objects (e.g., intersections, road types, roundabouts,
and vegetation). By extracting visual features from map imagery,
we effectively capture the characteristics and safety aspects of roads.
To integrate these diverse data sources, we aggregate all relevant
information within a specific location and time window, which
serves as the input to the CrashFormer model. The proposed model
comprises five components, each consisting of a deep neural net-
work model. Figure 1 illustrates the architecture of CrashFormer,
and the subsequent sections provide- a detailed description of its
constituent components.

5.4.1 Historical Event Encoder. We employ Frequency Enhanced

Decomposed Transformer (FEDFormer), a state-of-the-art transformer-

based network introduced by Zhou et al. [41], to extract the fea-
ture vector from the sequential weather and accident information.
This network combines seasonal decomposition with a transformer

to capture both overall trends and detailed structures, making it
a highly precise network for time-series forecasting. FEDFormer
has a linear complexity to the length of the time-series sequence,
making it a more efficient solution than other transformers. This
network also utilizes Fourier and Wavelet blocks for capturing time-
series structures by mapping data to the frequency domain. For its
lower computational and memory cost and its proven accuracy on
several benchmarks, we chose FEDFormer as our feature extractor
for the sequential data.

The sequential data, as described in Section 5.1, is fed as input to
the FEDFormer network. The input data is structured as (B, Lg, NF),
where B represents the batch size, Lg indicates the sequence length,
and Nf denotes the length of the feature vector representation,
which in our case is 27. The output of this component is an en-
coded feature vector that encompasses valuable information about
the historical records of traffic events and weather conditions. The
resulting shape of the output is (B, 224), signifying that the encod-
ing effectively summarizes the entire historical information into a
vector of size 224.

5.4.2  Image Encoder. We utilize VAN to extract useful road net-
work information from map images. VAN is an attention-based
model introduced by Guo et al. [7]. We used VAN — B1 for our
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feature encoding. A critical attribute of attention techniques is
adaptively modifying the representation based on the input charac-
teristic. This helps us encode the map images. This module takes
images with a shape of (B, C, H, W) as input, where B is the batch
size, C is the number of image channels (3), and H and W are the
image height and width, respectively (see Section 5.2 for details on
images). The output of this component is a vector of size (B, 128).

5.4.3 Data Encoder. This component is a simple multi-layer feed-
forward sub-network to encode the zone-wide demographic infor-
mation (explained in Section 3.3). We selected and normalized 144
demographic features and used them as input to this sub-network,
which encodes the information into a small vector. The output
vector size is (B, 28) (B is data batch size).

5.4.4  Feature Fusion. The process of consolidating latent features
extracted from various sources involves amalgamating these fea-
tures and generating a novel latent feature representation. This
newly formed latent feature is subsequently input into the classifier
layer for further analysis and classification. This approach facili-
tates the integration of diverse information streams, enhancing the
model’s ability to make informed decisions.

5.4.5 Classifier. The final component of our model is a simple
multi-layer feed-forward network. We combined the outputs of
previous components into a single vector of size (B, 380) with a
Feature fusion layer and input it into this sub-network to determine
the accident risk for area r at time t. By using softmax as the
activation function in this component, we are able to make the risk
prediction.

6 EXPERIMENT AND RESULTS

In this section, we analyze the performance of CrashFormer in
comparison to other leading models and baselines. We conducted
our experiments using data on accidents and weather from June
2016 to December 2021 for 10 major cities in the United States under
four different scenarios (as outlined in subsequent sections).

6.1 Experiment Setup

We implemented CrashFormer in Python and used Pytorch [25]
and scikit — learn [26] packages for implementing our model and
baseline models. We used Ohio Supercomputer Center [3] machines
for running our experiments.

We chose Adam optimizer to train CrashFormer, and selected
200 as the maximum number of epochs for training. To avoid over-
fitting, we applied an early stopping policy, where training will
stop if the value of the loss on the validation set does not decrease
after 10 consecutive epochs. The initial learning rate was set to
1073, and if no improvements could be observed for 5 consecutive
epochs, then the learning rate is reduced by a factor of 0.9 (i.e.,
LR_new = LRx0.9). This reduction could potentially continue until
the learning rate reaches 10~%. We used Binary Cross Entropy for
the loss function because finding a level of accident risk for differ-
ent areas can be modeled as a binary classification problem. This
loss function has been proven to work effectively for this class of
problems.
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6.2 Data Description

We trained and validated our CrashFormer in ten cities (see table
1). The choice of these cities was primarily to achieve diversity
in traffic records (accident) and weather conditions, population,
population density, and urban characteristics (road network, the
prevalence of urban versus highway roads, etc.).

As explained in Section 5.4, we prepared and pre-processed data
to use in the machine learning process. Each data record includes
aggregated feature vector representation for a 6 hours time interval
for a specific area r, and we used demographic data as raw data
for area r. Also, we used a map image for area r to represent the
corresponding geographical area. The goal is to predict the level of
accident risk, that is, a binary classification problem. We split the
cities into small areas of similar size using the H3 library. Table 1
shows the number of regions in each city. Houston in Texas, with
386 regions, is the largest city among the selected cities. In addition,
splitting time into ¢t = 6 hours means that we have four samples per
day. Therefore, we have 8080 time windows for each H3 area over
the entire dataset. As one could expect, the data suffers a significant
class imbalance issue, where samples with label 1 (i.e., high level
of accident risk) are quite rare. For a total of 17, 517, 440 samples,
there are only 644, 322 records with a label 1 (i.e., 3.67% of the data).
To mitigate this issue, we weighed the classes in the loss function
and empirically found weights 15.327 and 0.516 for labels 1 and 0,
respectively.

6.3 Baseline Models

To gauge the effectiveness of our proposed solution, we carried
out a thorough evaluation encompassing both Transformer-based
and non-Transformer-based models. These models represent the
cutting edge in time series modeling. Our aim was to assess how
our approach performs in comparison to existing methods.

e Transformer-based models

— Transformer: Vaswani et al. introduced Transformer
[34]. Recently, Transformer-based solutions have seen
an increase in long-term time series forecasting use. The
transformer we used for evaluation has full attention on
the encoder and decoder parts. Also, we have two layers
at the encoder part and one at the decoder part.

— Informer: The Informer model is a deep learning model
that captures long-range dependencies from long sequences
of time-series data [40]. We used this model with the exact
settings used in [40].

¢ Non-Transformer-based models

— DLinear: Recently, Zeng et al. [39] introduced one-layer
linear models referred to as LTSF — Linear and compare
their models to transformer-based solutions to forecast
long-term time series data. We used their model with their
recommended settings to assess its performance on our
problem.

Since some baseline models are not designed to work with se-
quential data, the input data is vectorized before feeding these mod-
els. The vectorization process uses accident and weather events
data and converts the time series data into a single vector. This is
necessary as the baseline models cannot process sequential data in
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Table 2: Evaluation of CrashFormer with varying length of sequences, F1_1 and F1_0 means F1_score for label one and zero

Sequence len=4 len=8 len=12 len=16
Metrics F1 1 F1 0 F1 1 F1 0 F1 1 F1 0 F1 1 F1 0
Houston 0.6539 0.9808 0.6391 0.9793 0.6286 0.9787 0.5961 0.9757
Seattle 0.5058 0.9717 0.5093 | 0.9721 | 0.499% 0.9712 0.4942 0.9706
Miami 0.5822 0.9770 0.5609 0.9750 0.5377 0.9727 0.5217 0.9711
Los Angeles | 0.6698 0.9515 0.6462 0.9469 0.6297 0.9435 0.6136 0.9401
Charlotte 0.6167 0.9798 0.6015 0.978 0.5935 0.9781 0.5818 0.9772
Dallas 0.6156 0.9792 0.6034 0.9782 0.5929 0.9773 0.5845 0.9767
Austin 0.5547 0.9829 0.5444 0.9823 0.5331 0.9816 0.5213 0.9808
Atlanta 0.5509 0.9820 0.5526 | 0.9821 | 0.5496 0.9819 0.5427 0.9814
Phoenix 0.4993 0.9814 0.5001 | 0.9815 | 0.4943 0.9811 0.4857 0.9805
San Diego 0.5507 0.9802 0.5496 0.9801 0.5485 0.9801 0.5451 0.9798
| Average | 0.57996 | 0.97665 | 0.57071 [ 0.97555 | 0.56075 | 0.97462 | 0.54867 [ 0.97339 |

Table 3: Effect of map images and demographic information on the risk of accident for that area. wo/Img means without map

image. wo/Demog means without Demographic

Model CrashFormer CrashFormer + wo/Img | CrashFormer + wo/Demog | CrashFormer wo/Img + wo/Demog
Metrics F1_1 F1_0 F1_1 F1_0 F1_1 F1_0 F1_1 F1_0
Houston 0.6539 0.9808 0.6446 0.9812 0.6498 0.9817 0.6398 0.9813
Seattle 0.5058 0.9717 0.4886 0.9706 0.4941 0.9706 0.4831 0.9695
Miami 0.5822 0.9770 0.5627 0.9780 0.5797 0.9789 0.5604 0.9780
Los Angeles 0.6698 0.9515 0.6546 0.9646 0.6614 0.9654 0.6683 0.9653
Charlotte 0.6167 0.9798 0.6091 0.9746 0.6173 0.9750 0.6072 0.9742
Dallas 0.6156 0.9792 0.6141 0.9713 0.5938 0.9689 0.5912 0.9684
Austin 0.5547 0.9829 0.5370 0.9749 0.5424 0.9756 0.5523 0.9764
Atlanta 0.5509 0.9820 0.5550 0.9653 0.5572 0.9814 0.5594 0.9822
Phoenix 0.4993 0.9814 0.4988 0.9808 0.4998 0.9808 0.4938 0.9804
San Diego 0.5507 0.9802 0.5195 0.9804 0.5370 0.9813 0.5259 0.9806
Average [ 0.57996 | 0.97665 | 056858 |  0.97417 0.57325 0.97596 0.56819 0.97573 |

their original form and must be transformed into a feature vector
for input.

6.4 Results and Discussions

In this section, we conduct four experiments to evaluate the perfor-
mance and generalization abilities of our proposed model, Crash-
Former. The first experiment focuses on investigating the impact of
hyperparameter selection on the model’s performance. We carefully
tune the hyperparameters and analyze their effect on the prediction
results. In the second experiment, we explore the enhancement
in performance achieved by incorporating map images and demo-
graphic information as additional features. By integrating these data
sources, we aim to capture more comprehensive contextual infor-
mation that can improve the accuracy of accident risk predictions.
The third and fourth experiments involve different data-splitting
approaches to further assess CrashFormer’s performance. In the
third experiment, we employ a training set consisting of data up un-
til December 30, 2020, while using the remaining data as the test set.
This scenario assumes the complete availability of accident data for
all areas and allows us to evaluate the model’s performance under
ideal conditions. In the fourth experiment, we simulate a real-world
scenario of spatial sparsity by randomly selecting certain areas

within a city for the training set while using the remaining data as
the test set. This setup reflects the challenge of making accurate
predictions for an entire city when only limited data from specific
areas are available. By examining CrashFormer’s performance in
this context, we gain insights into its ability to generalize effectively
and make reliable predictions with limited data.

6.4.1 Experiment I. In Experiment I, the primary objective is to
identify the optimal value for the hyperparameters of CrashFormer,
with a particular focus on the length of sequential data, denoted as
Lg. This experiment plays a crucial role in determining the config-
uration that yields the highest prediction performance.

Table 2 presents the experimental results for various choices of
Lg, specifically ranging from 4 to 16. With Ls = 4, the data is divided
into four consecutive time windows, each spanning a duration of 6
hours. Consequently, CrashFormer incorporates information from
the past 24 hours to predict the risk of accidents for the subsequent
6-hour period. The evaluation metric employed in this experiment
is the F1_Score, which takes into account both label one (high
accident risk) and label zero (low accident risk) to account for the
class imbalance present in the dataset. The F1_1 and F1_0 scores
represent the F1_Score calculated specifically for label one and
label zero, respectively.
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Figure 2: Comparing CrashFormer to baselines. F1_1 denotes F1_score for label one (high accident risk).

To conduct this experiment, the dataset is partitioned based on
regions (or areas) and time intervals. The training set comprises 70%
of the data, while 10% is allocated for validation, and the remaining
20% is utilized as the test set.

Analyzing the results presented in Table 2, it is evident that in the
majority of cases, utilizing data from four previous consecutive time
windows (Lg = 4) yields superior prediction performance compared
to the other choices. Across all ten cities, averaging the results
shows that selecting Lg = 4 leads to a substantial improvement in
the F1_1 score. Specifically, compared to Lg = 8, Ls = 12, and Lg =
16 configurations, adopting Ls = 4 demonstrates enhancements of
1.62%,3.42%, and 5.70% in the F1_1 score, respectively.

These findings provide strong evidence that CrashFormer achieves
its best prediction performance when incorporating data from the
past 24 hours (represented by Ls = 4). By leveraging this time win-
dow, the model effectively captures the relevant temporal patterns
and dependencies necessary for accurate accident risk prediction.
As a result, for the subsequent experiments, the choice of Lg = 4 is
adopted as the standard setting.

6.4.2 Experiment Il. In Experiment II, the aim is to assess the im-
pact of incorporating map images and demographic data, in addition
to sequential data, on the performance of CrashFormer. This ex-
periment serves as an ablation study to understand the individual
contributions and combined effect of these additional data sources.

To conduct the experiment, the model’s input is modified by
excluding map images, demographic data, or both. The predictive
performance of CrashFormer is then evaluated under each configu-
ration. Similar to Experiment I, the data is split based on regions
(or areas) and time intervals using the same strategy.

Table 3 presents the results obtained from this experiment, show-
casing the impact of each data source on CrashFormer’s perfor-
mance. Across most cities, the inclusion of both demographic and
map images yields improvements in the model’s prediction per-
formance. Averaging the results obtained from all ten cities, it is
observed that excluding map images leads to a reduction of 2.0%
in the F1_1 score, excluding demographic data results in a 1.17%

reduction, and excluding both (utilizing only sequential data) leads
to a 2.07% reduction.

These findings highlight the importance of incorporating map
images and demographic information in CrashFormer to enhance
its predictive capabilities. The addition of map images, in particular,
has a more pronounced impact on the model’s predictions com-
pared to demographic data. This suggests that spatial information
captured through map imagery plays a significant role in identify-
ing accident risk, enabling CrashFormer to better understand the
geographical context and identify potential accident-prone areas.

The observed reductions in the F1_1 score when excluding spe-
cific data sources underscore the competitive advantage of Crash-
Former in leveraging a comprehensive set of inputs. By incorpo-
rating map images and demographic data alongside sequential
information, CrashFormer demonstrates its ability to capture di-
verse factors that contribute to accident risk, resulting in improved
prediction performance.

6.4.3 Experiment Ill. In Experiment III, the objective is to evaluate
the performance of CrashFormer in predicting accident risk after
a certain date, assuming complete availability of data for all areas.
The dataset is split into training and test sets based on time, with
the training set consisting of data from June 21, 2016, to Dec 30,
2020, and the test set containing the remaining data.

To assess the effectiveness of CrashFormer in comparison to
state-of-the-art models for time series prediction, several baselines
are utilized. These baselines include the Informer and DLinear.
Notably, the input to all baselines in this experiment is limited
to sequential data only, without the inclusion of map images or
demographic information.

Figure 2 presents the results of this experiment, specifically fo-
cusing on the F1_1 scores of CrashFormer compared to the different
baselines for the five selected cities: Houston, Miami, Los Angeles,
Charlotte, and Dallas. The comparison demonstrates the superiority
of CrashFormer over the top-performing baseline models in terms
of predictive accuracy.

For Houston, CrashFormer outperforms the best baseline model
by 4.73% in terms of F1_1 score. Similarly, for Miami, CrashFormer



CrashFormer: A Multimodal Architecture to Predict the Risk of Crash

achieves a 3.64% improvement over the top baseline. In the case of
Los Angeles and Dallas, CrashFormer surpasses the best baseline
by 1.00% and 2.73%, respectively.

The exceptional performance of CrashFormer can be attributed
to several factors. Firstly, the utilization of a more advanced model
architecture, namely FEDFormer, contributes to its superior predic-
tive capabilities. FEDFormer incorporates both sequential data and
additional map images and demographic information, enabling the
model to capture a broader range of features and contextual factors
that influence accident risk.

The inclusion of demographic and map data in CrashFormer
proves to be advantageous, as it provides valuable insights into
the underlying factors influencing accident occurrence. By incor-
porating demographic information, CrashFormer can consider pop-
ulation density, age distribution, and other relevant demographic
factors that may impact accident risk. The integration of map im-
ages allows the model to analyze the spatial characteristics of an
area, identifying road network structures, intersections, and other
geographical elements that contribute to accident proneness.

6.4.4 Experiment IV. In Experiment IV, the objective is to evaluate
the impact of spatial sparsity on the prediction performance of
CrashFormer. The experiment focuses on the city of Houston, which
has the highest number of areas or hexagonal zones in the dataset.
The dataset is divided into training, validation, and testing sets
using a similar strategy as described in Section 6.4.1.

For this experiment, the performance of CrashFormer is com-
pared to the baselines in terms of F1_1 score. The baselines employ
sequential data as input, while CrashFormer utilizes data from
all three sources: sequential data, map images, and demographic
data. The purpose is to assess how CrashFormer’s comprehensive
approach performs when faced with spatial sparsity.

Figure 3 presents the results of this experiment, highlighting
the superiority of CrashFormer over the baselines. With an F1_1
score of 0.6539, CrashFormer outperforms all other baselines for
the city of Houston. Specifically, CrashFormer achieves a 2.737% im-
provement in F1_1 score compared to the best-performing baseline
model, Informer.

The enhanced performance of CrashFormer can be attributed
to multiple factors. Firstly, the inclusion of demographic data and
map images provides valuable additional information for model-
ing the spatial characteristics of accident risk. The incorporation
of demographic data allows CrashFormer to consider the demo-
graphic profile of different areas, such as population density, age
distribution, and other socio-economic factors, which can influence
accident occurrence.

Furthermore, the integration of map images enables CrashFormer
to analyze the road network structures, intersections, and other
geographical features that contribute to accident proneness. This
spatial awareness allows CrashFormer to capture the spatial de-
pendencies and patterns in accident data, resulting in improved
prediction accuracy even in sparsely sampled areas.

Moreover, the use of the FEDFormer model architecture further
enhances CrashFormer’s performance. FEDFormer effectively in-
tegrates the sequential, map, and demographic data, enabling the
model to capture complex temporal and spatial relationships for
accurate accident risk prediction. The combination of these factors
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Figure 3: Comparing CrashFormer’ with the baselines to test
the impact of spatial sparsity on accident prediction in Hous-
ton (TX)

allows CrashFormer to generalize well to new areas and make bet-
ter predictions for areas where the network has not been previously
trained.

The results of Experiment IV demonstrate the superior gener-
alization and predictive capabilities of CrashFormer when faced
with spatially sparse data. By surpassing the performance of the
baselines, CrashFormer showcases its ability to leverage compre-
hensive data sources and advanced modeling techniques to make
accurate predictions in areas where limited data is available.

7 SUMMARY

In this study, we have presented CrashFormer, a transformer-based
network for predicting traffic accidents by leveraging multiple data
sources. Our approach combines historical accident and weather
data, proximity to points of interest, demographic information,
and map images to enhance the accuracy of accident risk predic-
tion. Through rigorous experiments using real-world data from
ten major cities in the United States, we have demonstrated the
effectiveness of CrashFormer compared to state-of-the-art mod-
els. The integration of diverse data sources and the utilization of
transformer-based modeling techniques have shown significant
improvements in accident risk prediction.

Furthermore, the deployment and evaluation of CrashFormer in
real-world settings would be a valuable direction for future research.
Conducting large-scale experiments and assessing the model’s per-
formance in different cities or regions can provide insights into its
practical applicability and scalability.

In conclusion, CrashFormer offers a comprehensive and effec-
tive approach to predicting accident risk by leveraging multiple
data sources and advanced modeling techniques. The future work
outlined above aims to further enhance the model’s predictive
capabilities and validate its performance in real-world scenarios,
ultimately contributing to improved traffic safety and accident pre-
vention efforts.
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